
One code to rule them all (��_�)��O

Jared Adam

2023-06-06

Table of contents

Welcome to an introductory R course for natural scientists 5
One Code To Rule Them All . 5

What this course will cover: . 5
Part 1: The Reasoning . 5
Part 2: The Beginnings . 5
Part 3: Buckle up . 6

I The Reasoning 7

1 Introduction 8
1.1 What is programming? . 8

Programming . 8
What is R? . 8

1.2 Getting started with R . 8
Downloading R . 8
R vs RStudio . 9

1.3 The big four . 9
Components of RStudio . 9

2 R as a tool 14
2.1 Excel vs. R and why we should care . 14

Excel vs R . 14

II The Beginnings 17

3 Starting a project 18
3.1 Starting a new project . 18
3.2 R-compatible data sets . 18
3.3 How to get data into R . 18

Importing data . 18
3.4 Types of data . 24

2

4 Basic functionality 26
4.1 Shortcuts, arithmetic commands, logic, and other helpful tools 26

Shortcuts . 26
Arithmetic operators . 26
Logic commands . 27
Other important operators . 27

5 Several methods for calling different variables 28
5.1 Background of the operators . 28

The dollar sign: $. 28
Single dimension square bois: [] . 30
Multiple dimension square bois: [] . 31
Last but not least, the pipe: %>% . 32
The results, explained . 35

6 Getting fancy widdit 36
6.1 Functions, packages, and all that jazz . 36

What is a function? . 36
What is a package? . 37
Packages with data . 38

7 Coding etiquette 39
7.1 How to write code that is clean, clear, and reproducible 39

Naming new objects in R . 39
Style . 39
Annotations . 40

III Buckle up 43

8 Data wrangling 44
8.1 Cleaning our data in R . 44

R > excel . 44
What we use to wrangle . 44

8.2 dplyr Examples . 44
NAs in R . 45
select() . 45
rename() . 47
arrange() . 48
filter() . 50
summarize() . 53

8.3 Practice on your own . 55

3

IV Plotting along: IN BETA 57

9 Testing your skills: ggplot 58
Recreate these plots to the best of your ability . 58

Hints . 58
Plot time . 59
Additional resources . 60

V Last part 61

10 Resources and cheat sheets 62
Cheat sheet links . 62

11 Terms of endearment 63
To whom it may concern . 63

References 64

4

Welcome to an introductory R course for
natural scientists

One Code To Rule Them All

This page was originally built to act as an introduction to R and R studio. What it has
become is that, plus a little extra. This page will be updated as new information/ lessons are
requested. The link will not change, so no trouble.

We suggest starting from the beginning (even if you have used R before) and working through
each section. When appropriate, previous sections will be referenced, sometimes linked, and
we encourage you to use previous sections when needed. Along with this, there are snippets
of code which we encourage you to give a burn and copy each into your script.

If you have any suggestions or concerns, please email me at JaredAdam@psu.edu.

What this course will cover:

Part 1: The Reasoning

• Introduction: What is programming and what is R?

• R as a tool: How can we use R?

Part 2: The Beginnings

• Starting a project: Importing data

• Basic functionality: Logic and shortcuts

• Several methods for calling different variables Calling data with operators

• Getting fancy widdit: What are functions, packages, and how can we use them?

• Coding etiquette: How to write simple and reproducible code

5

Part 3: Buckle up

• Data wrangling: Data wrangling with base R and other important packages

6

Part I

The Reasoning

7

1 Introduction

1.1 What is programming?

Programming

Computer programming is the process of writing code to facilitate actions in a computer,
application, or software program, and instructs them on how to perform.

Each ‘type’ of programming comes with it’s own language. A programming language is a
vocabulary and set of grammatical rules for instructing a computer or computing device to
perform specific tasks. Examples of programming languages include, but are not limited to ,
C, C++, Java, Python, and of course, R.

The purpose of programming is to find a sequence of instructions that will automate the
performance of a task on a computer.

What is R?

At it’s root, R is a language and environment for statistical computing and graphic building.
R provides a variety of statistical (linear and nonlinear modeling, classical statistical tests,
time series analysis, classification, etc.) and graphical techniques (Base R, ggplot, etc.).

This software excels in its ease of producing publication-ready high-quality plots, use of
mathematical symbols, implementation of equations and formulas, and much more. Along
with this, R is also a free, open-source software available on a wide variety of platforms,
including both Windows and MacOS.

1.2 Getting started with R

Downloading R

How to download R, by Garrett Grolemund

8

https://rstudio-education.github.io/hopr/starting.html

R vs RStudio

R the application is installed on your computer and uses your personal computer resources to
process R programming languages.

RStudio integrates with R as an IDE (Integrated Development Environment) to provide
further functionality. To reiterate, RStudio acts as a housing of sorts to allow for the function-
ality and script writing of R. Think of saving photos to iCloud. Without a device, your photos
would be free-floating and rather inaccessible. BUT, with a device (housing), you are able to
access these photos. RStudio acts similarly with R in that it provides an environment to use
the software. There are other text editors and IDEs that are available, but we recommend
starting with RStudio. RStudio helps you use the version of R on your computer, but it
does not come with it’s own version of R.

1.3 The big four

Components of RStudio

Figure 1.1: A screenshot of my RStudio

1.3.0.0.1 * RStudio is divided into four panes

9

• The Script (top-left)
• The R Console (bottom-left)
• You Global Environment (top-right)
• Your Files/Plots/Packages/Help/Viewer (bottom-right)

The Script

The section is where your written code will go. Whenever you are giving R commands to
complete, this text will be entered in the script.

Along with this, the Script is where any open R files will be housed. This allows you to
navigate between scripts with ease.

The R Console

This section is where your outputs will be printed. Whenever you run a line in the script,
the console will produce an output, or an error message if the line was unable to be run. As
you can see in the picture below, the console’s output is both the line I ran, paired with the
respective output.

1.3.0.1 The Global Environment

This pane is where any of your imported or created objects will go. These could include, but
are not limited to, data sets, functions, vectors, values, etc. If you wish to view your full data
set, you can click on the the object. If you wish to view the the column and row names, but
not view the full object, you can select the blue and white arrow on the left-hand side of the
object name.

Your Files/Plots/Packages/Help/Viewer

This pane of RStudio is where a lot of information can be found. You can navigate your
computers files, view the plots you’ve developed, install packages, and find helpful information
and examples within an easy-to-use search bar.

10

Figure 1.2: A screenshot of my Script

11

Figure 1.3: A screenshot of my Conolse. This is what an my ran script output looks like.

Figure 1.4: Global Environment

12

Figure 1.5: A screenshot of my Files and such

13

2 R as a tool

2.1 Excel vs. R and why we should care

Excel vs R

When choosing between R and Excel, it is important to understand how both solutions can
get you the results you need. However, one can make it an easy, reputable, convenient process,
whereas the other can make it an extremely frustrating, time-consuming process prone to
human errors.

When opening Excel and applying data manipulation techniques to your data, are you easily
able to tell what manipulations have been made without clicking on the column or cells? If
you were to share these Excel sheets with colleagues are they easily able to replicate your
analyses without you telling them where to click or which formulas were applied?

With R all of these are possible. You automatically have all the code visible and in front of
you in the form of scripts. Reading and understanding the code is possible because of its easy-
to-use, easy-to-read syntax which allows you to track what the code is doing without having
to be concerned about any hidden functions or modifications happening in the background.

When we consider our programming methods, we must strive for two goals: simple and
reproducible. R makes both of these goals achievable.

Let’s keep talking about this

I want to inform you of something. This is entirely objective and bias-free (as if that is even
possible).

Let’s talk excel data sheets for a moment. Excel has some great features. The most flexible of
these is the cell. An excel cell can be extremely flexible as they can store various data types
(numeric, logical, and characters).

This is great! We can store our data here in a nice and organized manner and scroll through
and view it all with relative ease.

Not so fast. Lettuce think about a data set with 5,000 or 20,000, or 100,000, or 500,000,
or 1,000,000 rows and 100+ columns. Now. Imagine scrolling through all of this looking for

14

errors. Or double checking formulas written within new columns. Imagine saving this file over
and over upon each rendition. What were to happen if an error was missed after formula
was run and you continued to work and save new files? This could mean big trouble when it
came time for a real analysis. Personally, that sounds like a nightmare.

Now that I got that off my chest. Let’s chat about R. Within R are some great options for
viewing our data. We can look in our environment. We can call certain base R functions (See
functions section here) to view different sections.

Here are some examples of these functions.

The structure (str) to view the nature of our data set.

15

The head function to view the first several rows of a data set.

The tail function to view the last several rows of our data set.

The colnames function to view the names of our columns.

As we are starting to see, when compared to Excel with examples of only viewing data, R is
beginning to appear more versatile. We will continue to build on the capabilities of R in future
sections and work through functions, etiquette, data wrangling, plotting, and much more.

16

Part II

The Beginnings

17

3 Starting a project

3.1 Starting a new project

To begin, we must first open a new project.

1. To open a new project, you first select the RStudio app on your computer. Unless
immediately prompted, select New Project under the File tab.

2. Next you will be prompted select which Directory type. Select New Directory.

3. Next, in the Project Type screen, you will select New Project.

4. Once selected, you will be prompted to name the Directory. Make this name unique and
choose where you would like it to be saved.

3.2 R-compatible data sets

When importing a data set from excel into R, the file type must be a .csv, rather than the
typical .xlsx.

For further instruction on preparing an R-ready .csv, please see the link below.

Building an R-friendly .csv

3.3 How to get data into R

Importing data

Working directory

Your working directory is where you will have R pull data sheets from. There are two common
ways of doing this.

18

http://www.sthda.com/english/wiki/best-practices-in-preparing-data-files-for-importing-into-r

19

20

21

22

The first step is to determine where R currently thinks our working directory is. To do this,
we use the getwd function.

getwd()

#output:"C:/Users/jsada/OneDrive - The Pennsylvania State University/Documents"

As you can see, the output shows my computer pathway, or source, of where R will be obtaining
files.
If we wish to change this, we have two options.

First, we will use the setwd package. Within the parentheses of this function, we will write
out the desired pathway. Let’s say I wish to be more specific than just the Documents folder.

setwd("C:/Users/jsada/OneDrive - The Pennsylvania State University/Documents/Research/R/Intern Tutorial/Book")

The second method for setting your working directory is done through the Session menu at
the top. You will then hover over Set Working Directory and then select Choose Directory…
From here, you will navigate to the folder you wish to pull data from.

Figure 3.1: Setting my working directory

23

Now that we have our working directory set, we can take a look into the folder.

To see how many files are in my directory, I will use the length function.

length(list.files())
#output: 24

To see the first five files within my directory, I will use the head function.

head(list.files())
#output:

#[1] "_book" "_quarto.yml" "Book.Rproj" "cover.png"
#[5] "directory.png" "Glossary.qmd"

The last command we will run to investigate our working directory is the %in% operator. We
will use this operator to see if there is specific file within our directory. This operator will
provide us with a logical out (TRUE or FALSE). When calling a specific object, we must use
either half, or full parentheses.

'Book.Rproj' %in% list.files()

#output: TRUE

Github

In this book, I will not cover using the Github platform for data storage. If you wish to explore
this further, please see the linked tutorial below.

A Github tutorial by Callum Arnold

3.4 Types of data

Now that we have our data set imported into R, we can begin looking our data. The first step
is gaining an understanding of the type of data we have. Within R, there are 5 main types of
data. These include:

Data type Example
numeric (10.5,55,680)
integer (1L, 55L, 100L, where the letter “L” declares this an integer)
complex (9+3i, where “i” is the imaginary part)

24

https://psu-git.callumarnold.com/

Data type Example
character (Also known as strings - “k”, “bugsRcool”, “11.5”, “etc.”)
logical (TRUE and FALSE)

When it comes to data manipulations, statistical tests, model building, and developing plots,
it is incredibly important that our data are classified as the correct data type. To determine
this for single variables or values, we use the class function.

Copy these examples into your script to try this function out.

numeric
x <- 10
class(x)

integer
x <- 10L
class(x)

complex
x <- 9i + 3
class(x)

#character/string
X <- "Boy howdy, this is rivetting stuff"
class(x)

logical
x <- TRUE
class(x)

25

4 Basic functionality

4.1 Shortcuts, arithmetic commands, logic, and other helpful tools

Shortcuts

Run

Task Windows & Linux Mac
Run Ctrl + Enter Cmd + Return

Shortcuts for editing

Task Windows & Linux Mac
Copy Ctrl + C Cmd + C
Paste Ctrl + V Cmd + V
Undo Ctrl + Z Cmd + Z
Redo Ctrl + Shift + Z Cmd + Shift + Z
Select All Ctrl + A Cmd + A
Indent Tab Tab
Outdent Shift + Tab Shift + Tab
Insert pipe operator Cmd + Shift + M Cmd + Shift + M

Arithmetic operators

Task Operator Example
Addition + x + y
Substraction - x - y
Multiplication * x * y
Division / x / y
Exponent ^ x ^ y

26

Logic commands

Task Operator Example
Equal == x == y
Not equal != x != y
Greater than > x > y
Less than < x < y
Greater than or equal to >= x >= y
Less than or equal to <= x <= y

Other important operators

Task OperatorExample
Call for the help menu for the respective function ? ?mean
Assigning a name or value <- Name <- "Chop"
To access one variable in a data set $ DataSet$IWantThisColumn
Searching or calling exact characters "" "Chop Spring"
Concatenate (c), combines arguments, both
numbers or words, into a vector

c() Name <- c("Jared",
"Daniel", "Chop") Numbers <-
c(1,2,3)

Another form of concatenation used when writing
long scripts of code which span multiple lines

+ This line + this line too

27

5 Several methods for calling different
variables

5.1 Background of the operators

When calling specific variable, list, or object in R, there are three main ways. These include
the $ operator, the [] (bracket), and the %>% (pipe) operator. These operators work in similar
ways in that they allow you to access specific pieces of your data frame.

In this section we will investigate all three.

The dollar sign: $

This operator is used in R to access the list of a data frame. You can use this operator to
access variables, add values or objects, update (e.g., change a class), and delete variables from
a data frame.

Let’s start by creating a data frame.

score <- 1:4 #score column with values of 1-4

insect <- c('wasp', 'beetle', 'ant', 'TrueBug') #insect column with a list of names

field <- c('corn', 'beans', 'corn', 'beans') #field column with a list of names

Avg_Weight_mg <- c(2, 7, 0.5, 3) #assigning weight values to each insect

Sample_DF <- data.frame(score, insect, field, Avg_Weight_mg) #using the data.frame function to create a date frame with the columns I established above

print(Sample_DF) #using the print function to view my new data frame

score insect field Avg_Weight_mg
1 1 wasp corn 2.0
2 2 beetle beans 7.0
3 3 ant corn 0.5

28

4 4 TrueBug beans 3.0

Now that we have our data frame, let’s use the $ operator to investigate our data.

First, let’s say we want to look at the insect column. The $ operator here pulls out the just
the values of this column. Notice, to use this, we need to specify a source. The source here
is ‘Sample_DF’. Try this operator out to see which variations of column names will, and will
not provide you with an output.

Sample_DF$insect #show me the insect column within Sample_DF

[1] "wasp" "beetle" "ant" "TrueBug"

So, now we can see the functionality of this operator as a means of viewing data. Let’s now
investigate adding a new column to this existing Sample_DF.

In this example, we will be adding a column to specify whether the insect was an adult, or not.
We will do this by adding our new object name following our source, Sample_DF, and then
specifying the values of this column. Remember, we need to have a source data frame when
we use this operator.

Sample_DF$adult <- c('yes', 'no', 'no', 'yes') #naming a new column IN Sample_DF with the values within c()

print(Sample_DF) #printing this updated df

score insect field Avg_Weight_mg adult
1 1 wasp corn 2.0 yes
2 2 beetle beans 7.0 no
3 3 ant corn 0.5 no
4 4 TrueBug beans 3.0 yes

We can now see our new column was added to the right-hand side of the existing data frame.

Lettuce look at one more example of how we can use this operator. Here, we will be changing
the class of an object within Sample_DF.

In this example, I want to change the class of score from integer, to numeric. Notice, I have
to call the data source in the beginning to tell R I do not want to create a new object, I only
want to change my existing data frame. Next, I need to specify the source for the function,
as.numeric.

29

Sample_DF$score <- as.numeric(Sample_DF$score) #within my df, in the score column, change the class to numerical

If you wanted to create a new object with this change, we can simply change the name of the
object.

We can do this, like so.

New_DF <- as.numeric(Sample_DF$score) #within a new df, in the score column, change the class to numerical

print(New_DF) #show me the new df

[1] 1 2 3 4

Notice here, the new object only houses the values from the score column.

Single dimension square bois: []

Brackets [], in R, work similarly to that of the dollar sign ($). Brackets are especially useful
when we want to extract single elements from an object. Let’s start by creating a simple,
single dimension vector.

#ceating a numeric vector
Vector_One <- c(1,2,3,4,5,6)

Now, let’s pull some stoof out. In this example, I am going to pull out several individual values
from the vector we just created.

Vector_One[1] #extracting the first value of the data set

[1] 1

Vector_One[3] #extracting the third value of the data set

[1] 3

Now that we have extracted individual values, let’s pull several out at once. Notice that the
syntax has changed a bit. We now must tell R that we want to combine the three values into
one output. This is done by adding, c(1,2,3), within our brackets

30

Vector_One[c(1,2,3)] #extracting the first, second, and third value of the data set

[1] 1 2 3

The next step is to have R to pull values out based on a command. In the following example,
we will use some of the logic commands we covered earlier.

Let’s say I want to see all of the values in this data set that are above the number 3.

Vector_One[Vector_One > 3] #extracting values greater than 3

[1] 4 5 6

We can repeat this step with any logical operator we would like.

For example.

Vector_One[Vector_One >= 2] #extracting values greater than or equal to 2

Vector_One[Vector_One != 2] #extracting values that do not equal 2

Multiple dimension square bois: []

Now that we can see how to use the brackets when looking for single objects (like a simple
vector), let’s start to look at the use of brackets with an increase in dimensions. Multiple
dimensions come into play when we are investigating a full data frame or matrix. In this
section, we will be looking at the Sample_DF data frame we created above.

Within the bracket are assigned values. By this, I mean, depending on the location of the
number within the bracket, the location that information is pulled from will change. The
assigned locations are [row, column]

For example, if we were to run [1,2], our output would be the value in the first row and second
column.

In this example, we will pull out the values from the first row, and second column.

Sample_DF[1,2] #extracting values from row 1 and column 2

[1] "wasp"

Next, let’s investigate what happens when we leave one of the ‘values’ blank.

31

Sample_DF[,2] #extracting values from all rows and the second column

[1] "wasp" "beetle" "ant" "TrueBug"

What we see here is that R gave us the values from all rows, but just the second column.

We can use the same method if we want to view information from all one row, but all
columns.

Sample_DF[1,] #extracting values from row 1, and all columns

score insect field Avg_Weight_mg adult
1 1 wasp corn 2 yes

In the next example, we will investigate how to exclude information. Let’s say we want to
view the whole data frame except for the values of row 1. This is done by using, -1, in the row
value of the brackets.

In this example, I am telling R to exclude all values of row 1 from the output.

Sample_DF[-1,] #extracting all values, except for row 1 information

score insect field Avg_Weight_mg adult
2 2 beetle beans 7.0 no
3 3 ant corn 0.5 no
4 4 TrueBug beans 3.0 yes

In our last example of the bracket, we will extract information from a specified column, but
all rows. To do this, we will continue to leave the row value blank, but add in the exact name
of the column we seek to view.

Let’s take a look at the ‘insect’ column.

Sample_DF[, "insect"] #extracting values from all rows, but just the insect column

[1] "wasp" "beetle" "ant" "TrueBug"

Our output shows us all of the values within the insect column.

Last but not least, the pipe: %>%

32

Note

For the sake of not working too far ahead, I will not include many examples here. In
the data wrangling section, I will be exclusively using the pipe operator. Please see that
section for working examples of the pipe operator.

SO. We have investigated, and worked through, the dollar sign operator and brackets for
pulling out specific elements. These methods are certainly effective, but as we start to work
through larger data sets of raw data, there may be many changes we need to apply.

To accomplish this, we could write out a new command line for each iteration, OR, we can
‘pipe’ several commands into one operation. This processing of piping links all of our changes
to one command, allowing for efficiency and easy error-tracking. To reiterate, this task is the
chaining of arguments into one command.

This operator, the pipe %>%, is arguably one of the most important operators in data wrangling
and processing.

Rory Spanton, with Toward Data Science, explains this process well, “To visualize this process,
imagine a factory with different machines placed along a conveyor belt. Each machine is a
function that performs a stage of our analysis, like filtering or transforming data. The pipe
therefore works like a conveyor belt, transporting the output of one machine to another for
further processing.”

Here I will write out two examples. Within these examples, I will be creating functions and
then running them sequentially both with, and without the pipe operator. We will cover
writing functions in the future.

starting with creating three separate functions

a function to add two values
add <- function(x,y) {
return(x+y)

}

a function to multiply two values
mul <- function(x,y) {
return(x*y)

}

a function to divide two values
div <- function(x,y) {
return(x/y)

}

33

Now that we have our functions created, let’s put them to work in the long form.

I am now calling each function sequentially

result_1 <- add(2,4) # applying my add function to two values (x,y)

result_2 <- mul(result_1, 5) # applying my mul function to the results from the add function (x) and a new value of 5 (y)

result_3 <- div(result_2, 6) # applying my div function to the results from the mul function (x) and a new value of 6 (y)

print(result_3)

[1] 5

As we can see, this method is effective. But, where it falters, is that we must save each iteration
and then input that object name into the next function. While this example is simple, we can
imagine how with an increase in the complexity of our functions and sequential manipulations,
this can become an overwhelming method.

Let’s now look at the same sequence of functions, but this time using the pipe operator.

First, we will need to load in the dplyr package to use the pipe operator.

library(dplyr) #loading the dplyr package

piping my three functions together
results <- add(2,4) %>% # adding 2 and 4 with the add function
mul(5) %>% # chaining the results from add into the mul function
div(6) #chaining the results from the mul function into the div function

print(results) #printing the results

[1] 5

We got the same output! As we can see, this method is both cleaner (regarding your envi-
ronment and saving objects over and over) and safer (regarding to errors) than the sequential
example.

34

The results, explained

Continuing to follow Rory’s brilliant synthesis of this operator, I will use their example here.
Let’s think of %>% as the word ‘then’.

Let’s now write out the same piping example.

• The results from this chain will be named “results”,

– I will be adding the numbers 2 and 4 together, THEN

– I will multiply the results from the addition by 5, THEN

– I will divide the results from the multiplication by 6

As we can see, this operator acts as a link in the chain which holds the whole argument
together, allowing it to act as one command. The pipe operator is an excellent addition your
coding repertoire when you would like to eliminate the saving of multiple objects with each
iterative change, lower the risk of an error occurring within the multiple changes, and allow
for a cleaner, more palatable, R script.

35

6 Getting fancy widdit

6.1 Functions, packages, and all that jazz

What is a function?

A function in R is an object containing multiple interrelated statements that are run together
in a predefined order every time the function is called. What this means, is that within every
function, there are set of instructions to be followed in their respective order to complete a
desired task.

For example, let’s say we want to find the mean value of a desired set of numbers.

(1+2+3+4+5+6) / 6

[1] 3.5

This is an effective method for acquiring the average of a small set of numbers that are not
saved in R. But, what if they were saved?

In this example, we create a vector named ‘Mean_Example’ with the previous six numbers.
Rather than adding them manually, we use the sum function to automatically add the values.
We then set this sum to be divided by six, which is the total number of values.

Mean_Example <- c(1,2,3,4,5,6)

sum(Mean_Example)/6

[1] 3.5

Now, let’s crank this up a notch. What do we do if we have a large data set and want to
calculate the mean of a column? First, I created a data set named ‘bugs’ with three columns:
spiders, beetles, and wasps. Then, using the rnorm function, I set the number of values per
column with a default mean of 0 and standard deviation of 1. The purpose of this fake data
set is just so we have something to work with with an expected mean.

36

Once this data set is created, we can test out the mean function on one of the columns. Within
the mean function, I tell R to take the mean of the spider column FROM the ‘bugs’ data set
we created. The ‘$’ symbol tells R where to look within an existing data set.

bugs <- data.frame(
spiders = rnorm(200),
beetles = rnorm(250),
wasps = rnorm(1000)

)

mean(bugs$spiders)

[1] -0.04723078

#Remember, our default mean was 0

What is a package?

While R has many built in functions (e.g., mean), some of the most useful functions do not
come pre-installed. When this is the case, they are provided to us in well made, neatly packed
downloadable objects called packages. In essence, the creator of the package has nestled a
bunch of things to make your programming life easier into a little folder you can download,
and use, at your leisure. An R package can bundle together useful function, help files, and
data sets. Typically, a package will have a list of functions all related to the same task or set
of tasks.

Let’s take a look at the ggplot2 package. The purpose of this package is on the grammar of
graphics; the idea that you can build every graph from the same components: a data set, a
coordinate system, and geoms-visual marks that represent data points. Functions, such as
ggplot, that reside within this package are all designed for the ease of figure development.

Let’s take a look at how to download a package, starting with ggplot2.

To download a package, we must use the install.packages function, and place the desired
package name in “quotation marks” within the function parenthesis. Once downloaded, we
must then ‘call’ the function into our system. Using the library function, we tell R to load
this package into our current project. We only need to install the package once, but we must
‘call’ it in every time we restart Rstudio. (To run this code, you must remove the # symbol
from install.packages.

37

#install.packages("ggplot2")

library(ggplot2)

Packages with data

Now that we can investigated installing and downloading a package for the use of functions,
we will now explore available data sets on R. There are many available data sets within R that
we can download and practice programming, but for this tutorial we will work with Palmer
Penguins. It is wise to download this now, because we will revisit this data set in future
sections.

Take notice of how I use quotation marks around the package name when using the func-
tion install.packages, but not when I load the package into my session with the library
function.

#install.packages("palmerpenguins")

library(palmerpenguins)

38

7 Coding etiquette

7.1 How to write code that is clean, clear, and reproducible

Naming new objects in R

First, and foremost, we should investigate how to name new objects within R. There are two
methods to complete this task. These include the equals sign, =, and the carrot jawn, <-.

For example, the output of these lines will be identical.

data = c(1,2,3) #new object with equals sign

data <- c(1,2,3) #new object with carrot jawn

While these are the same, what we recommend is using the carrot method (<-). This is because
many functions require the use of = within code (this will come up in the future). For this
reason, we find it best to utilize the carrot whenever you change the name of an object, or add
a new object.

It is important to remember that you can change the time of an object whenever you want.
This is especially helpful when making changes to our data set. With each iterative change,
we can change the name of the object. This will allow us to backtrack to the pevious change
in the event we make a mistake.

Style

Coding, like any other writing type, is dependent upon clear and consistent style. As the
tidyverse style guide so eloquently put it, “Good coding style is like correct punctuation: you
can manage without it, butitsuremakesthingseasiertoread.” Here, we can clearly see how a
simple phrase becomes exponentially more challenging to read and understand. The same
goes for coding.

It is important to remember that R cannot handle spaces between words. Because of this,
we must be creative in how we name things. It is a good idea to follow the BigCamelCase
naming method. Let’s start by naming a vector.

39

#GOOD
MyNewVector <- c(1,2,3,4,5,6)

#BAD
mynewvector <- c(7,8,9,10,11,12)

While in this example it is fairly easy to read both, we see how the name following the
BigCamelCase format is easier to follow.

Let’s look at another example of naming, this time getting more specific with our vector
name.

#GOOD
SlugDensityData_Spring2023 <- c(1,3,5,7)

#BAD
slugdensitydataspring2023 <- c(2,4,6,8)

I incorporated an underscore in the first name to make it even more distinct. We can clearly
see now with increasing complexity of our names, the first is much easier to read.

Annotations

When taking notes in a lecture, do you think it wise to take poorly written and hard to
understand notes? Or, would we rather take clear, concise, and methodical notes to ensure
we can return to them and understand exactly what the lecture was about? If you choose the
former, then please, continue reading.

Annotation, like note taking, is very important within our code. We must be able to return
to each line and know exactly what we did and why we did it. Along with this, if we wish to
share this code with anyone, they too must be able to understand the methodology without
needing you by their side. The habit of good code annotation is one that should be adopted
immediately and practiced throughout the duration of your programming days.

Let’s look at some examples of both good, and bad annotations.

#GOOD
##
#I am creating a vector to practice running different functions

PracticeVector <- c(11,3,4,5,6,7)

40

#Trying out the mean function here
mean(PracticeVector)
#This works. I will leave this code here to reference in the future
##

#BAD
practicevector <- c(11,2,3,4,5,11,2)
mean(practicevector)

While these examples are very simple in their nature, we can imagine how scrolling through
500+ lines of un-annotated code can be a nightmare. Along with this, to reiterate my naming
point, we can see how with poor naming practices and a lack of annotation, the bad example
is doubly hard to follow.

Along with annotating what you are doing, it can also be helpful to write out your thought
process for an action. Let’s say you are writing code for a project on a Friday, and since you
are great at managing your workload, you plan to not work this weekend. When Monday rolls
around, you open your R script up and have completely forgotten why you were running a
specific test or structuring your code a specific way.

With proper annotation, this hiccup can be avoided.

Let’s take a look at some examples.

#GOOD
##
#I am trying to create a fake data set to practice some functions on
#Not to be used for analyses, simply for me

bugs <- data.frame(#naming this 'bugs' and using the data.frame function to build this
spiders = rnorm(200), #naming this column 'spiders' and using the rnorm function. This function builds a column with a default mean of 0 and a standard deviation of 1. This column will have 200 values.
beetles = rnorm(250), #Same as above, but with 250 values
wasps = rnorm(1000) #Same as above, but with 1000 values

)
##

In this example, I clearly noted what I was doing and why I was doing it. For my sake, I
can return to this easily. If someone else was to come upon this, they too would be able to
understand what my process was.

#BAD
notbugs <- data.frame(
clover = rnorm(200),

41

shrubberies = rnorm(200),
elderberry = rnorm(2000)

)

In this example, it is unclear what the purpose of this data set is. Along with that, if someone
is not familiar with this script, they may find it very challenging to follow.

42

Part III

Buckle up

43

8 Data wrangling

8.1 Cleaning our data in R

R > excel

Before we begin wrangling our data set, let’s quickly discuss why cleaning data in R is impor-
tant. First and foremost, my Excel file never needs to change. Along with this, I only need
to save it once. No saving a new copy every time I make a new column or want to write a
formula.

In this section, we will go over some important packages and key functions that will aid in
the transition from Excel-based data wrangling to exclusively R-based data wrangling. SO,
without further ado, lettuce begin.

What we use to wrangle

When we wrangle our data sets, there is one ‘umbrella’ package I find to be the most versatile.
This is tidyverse. Tidyverse houses many useful packages for data manipulation, but in this
section I will only be referring to one. This package is dplyr. While I rely on this package a
lot, I also use functions pre-installed in Base R while wrangling.

Please see the wrangling cheat sheets here.

8.2 dplyr Examples

Let’s start by installing the needed packages. Remember to remove the # symbol to install
these packages. We will also call in our Palmer Penguins data set that you downloaded
earlier.

#install.packages("dplyr")
library(dplyr)

#install.packages("tidyverse")

44

library(tidyverse)

library(palmerpenguins)
data(package = 'palmerpenguins') #investigating the pieces of this data set. How many data sets are there?

NAs in R

Before we begin, we must first check for missing values. R does not love when NAs get thrown
into the mix, especially when running numerical commands, like the mean function.
To resolve any missing values, we must first determine if there are any NAs, and where they
may be.

First, we will look to see IF and WHERE potential NAs are in our data set. We will do this by
using the which function, followed by the is.na function within our penguins data set. What
these two functions do together is which locates all of the columns where NAs are present,
based on the is.na function. If we wanted to find all of the columns where there were no NAs,
we could simply change is.na to !is.na.

In this example, my command is to determine where the NAs are. Using the arr.ind = TRUE
command, I am telling R to show me exactly where they are. In this example we are using
penguins_raw.

Note

This is the only section that will use the raw data set in the example.

which(is.na(penguins_raw), arr.ind = TRUE) #checking for NA locations in penguins_raw

Now that we see there are NAs riddled throughout, we will name a new object (using the same
name), but omitting all NAs.

In this example, I am using the na.omit function to remove all NAs from our penguin data
set. I am also naming this new object (penguins_raw again for ease).

penguins_raw <-
na.omit(penguins_raw) #I must add this because there are NAs within this data set and these functions will not work otherwise

select()

Let’s start by selecting for only the columns we are interested in. This can be useful when
removing variables we are not currently interested in. Remember, at any manipulation, you

45

can save the changes as a new object which will maintain the integrity of the original if you
must back track for whatever reason.

In this example, we use the select function to choose which columns we want to look at.
Notice, we are back to using penguins!

select()
penguins %>% #From the penguins data set
select(species, bill_length_mm, year) # selecting columns species, bill_length, and year

A tibble: 344 x 3
species bill_length_mm year
<fct> <dbl> <int>

1 Adelie 39.1 2007
2 Adelie 39.5 2007
3 Adelie 40.3 2007
4 Adelie NA 2007
5 Adelie 36.7 2007
6 Adelie 39.3 2007
7 Adelie 38.9 2007
8 Adelie 39.2 2007
9 Adelie 34.1 2007
10 Adelie 42 2007
i 334 more rows

Now that we have selected for certain columns, let’s say we want to view everything except
for one or several columns. Instead of typing out every column we want, we can simple type
out the one(s) we don’t.

In this example, I tell R to remove the sex column using the select function again.

select()
penguins %>% #From the penguins data set
select(-sex)# selecting all columns except for sex

A tibble: 344 x 7
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA

46

5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
7 Adelie Torgersen 38.9 17.8 181 3625
8 Adelie Torgersen 39.2 19.6 195 4675
9 Adelie Torgersen 34.1 18.1 193 3475
10 Adelie Torgersen 42 20.2 190 4250
i 334 more rows
i 1 more variable: year <int>

Within the select function, you can also look for items based on their spelling. This can be
especially helpful if you suspect there to be a spelling error somewhere if your data set. In this
example, we will search our data set for any variable name that starts with the letter ‘b’.

select()
penguins %>% #From the penguins data set
select(starts_with('b')) # selecting columns that start with 'b' and using starts_with

A tibble: 344 x 3
bill_length_mm bill_depth_mm body_mass_g

<dbl> <dbl> <int>
1 39.1 18.7 3750
2 39.5 17.4 3800
3 40.3 18 3250
4 NA NA NA
5 36.7 19.3 3450
6 39.3 20.6 3650
7 38.9 17.8 3625
8 39.2 19.6 4675
9 34.1 18.1 3475
10 42 20.2 4250
i 334 more rows

rename()

Now that we have viewed and selected for different columns and such, we manipulate our data
set further. We will start by renaming some columns. Notice with rename, there are two
methods you can use. One without quotation marks, and one with.

In this example, using the rename function, I am changing ‘species’ to ‘Species and ’year’ to
‘Year’.

47

rename()
penguins %>%
select(species, bill_length_mm, year) %>% #selecting the columns I want to look at
rename(#rename function. notice here the two methods of changing names

Species = species, #changing species to Species without quotes
"Year" = year #changing year to Year with quotes

)

A tibble: 344 x 3
Species bill_length_mm Year
<fct> <dbl> <int>

1 Adelie 39.1 2007
2 Adelie 39.5 2007
3 Adelie 40.3 2007
4 Adelie NA 2007
5 Adelie 36.7 2007
6 Adelie 39.3 2007
7 Adelie 38.9 2007
8 Adelie 39.2 2007
9 Adelie 34.1 2007
10 Adelie 42 2007
i 334 more rows

arrange()

let’s arrange some stuff this is equivalent to sort!

One of the first steps we take in Excel is the sorting of our data sets. Whether that be the
sorting of plots, or dates, or anything; we start by sorting. The same is possible in R. We do
this using the arrange function.

In this example, we will be sorting by bill length in an increasing order (smallest to largest).
Notice here that R will default to the order of small-large with the arrange function.

select() and arrange()
penguins %>%
select(species, bill_length_mm, year) %>%
arrange(bill_length_mm) #I want to look at bill length in an increasing order from smallest to largest

A tibble: 344 x 3
species bill_length_mm year

48

<fct> <dbl> <int>
1 Adelie 32.1 2009
2 Adelie 33.1 2008
3 Adelie 33.5 2008
4 Adelie 34 2008
5 Adelie 34.1 2007
6 Adelie 34.4 2007
7 Adelie 34.5 2008
8 Adelie 34.6 2007
9 Adelie 34.6 2008
10 Adelie 35 2008
i 334 more rows

In this example, we will be sorting by bill length in a decreasing order (largest to smallest).
Notice here, we need the arrange function to tell R we will be changing the order. Once that
command is established, we can further command the order.

In this example, I use the arrange function, followed by the desc function (descending),
commanding the order of bill length to go from big to small values.

select(), arrange(), and desc()
penguins %>%
select(species, bill_length_mm, year) %>%
arrange(desc(bill_length_mm)) #using the desc() function to command the order from largest to smallest

A tibble: 344 x 3
species bill_length_mm year
<fct> <dbl> <int>

1 Gentoo 59.6 2007
2 Chinstrap 58 2007
3 Gentoo 55.9 2009
4 Chinstrap 55.8 2009
5 Gentoo 55.1 2009
6 Gentoo 54.3 2008
7 Chinstrap 54.2 2008
8 Chinstrap 53.5 2008
9 Gentoo 53.4 2009
10 Chinstrap 52.8 2008
i 334 more rows

Now, let’s say we want to see bill length in the same descending order, but we want to order
this by year. This is done with a very simple addition to our arrange() section. To accomplish

49

this, we add the year variable first (remembering the the default for arrange is small-large)
followed by the bill length command (which is the same as the previous example.)

select() and arrange()
penguins %>%
select(species, bill_length_mm, year) %>%
arrange(year, desc(bill_length_mm)) #year and bill separated by a comma

A tibble: 344 x 3
species bill_length_mm year
<fct> <dbl> <int>

1 Gentoo 59.6 2007
2 Chinstrap 58 2007
3 Chinstrap 52.7 2007
4 Chinstrap 52 2007
5 Chinstrap 52 2007
6 Chinstrap 51.7 2007
7 Chinstrap 51.3 2007
8 Chinstrap 51.3 2007
9 Chinstrap 51.3 2007
10 Chinstrap 50.6 2007
i 334 more rows

filter()

Within R, we also have the ability to subset out data sets and pull out rows with specific
values. Let’s say I only want to look at data from 2007. To accomplish this, we will use the
filter function.

In this example, we will be adding the filter function as well as recall our knowledge of
operators within R.

select() and filter()
penguins %>%
select(species, bill_length_mm, bill_depth_mm, year) %>%
filter(year == 2007) #using the '==' operator to show everything with the year 2007

A tibble: 110 x 4
species bill_length_mm bill_depth_mm year
<fct> <dbl> <dbl> <int>

1 Adelie 39.1 18.7 2007

50

2 Adelie 39.5 17.4 2007
3 Adelie 40.3 18 2007
4 Adelie NA NA 2007
5 Adelie 36.7 19.3 2007
6 Adelie 39.3 20.6 2007
7 Adelie 38.9 17.8 2007
8 Adelie 39.2 19.6 2007
9 Adelie 34.1 18.1 2007
10 Adelie 42 20.2 2007
i 100 more rows

What if I want to see which penguins have bill lengths that are higher than the average length,
but only from 2007? This can be accomplished by, again, adding an operator, but also calling
another function. We will command R further with mean function from base R. Notice I
am separating each line in the filter function with a comma. This allows me to add multiple
commands within the same function.

select(), filter(), and mean()

penguins %>%
select(species, bill_length_mm, year) %>%
filter(

year == 2007,#using the '==' operator to show everything with the year 2007
bill_length_mm > mean(bill_length_mm), # using '>' to view every row where the bill length is greater than the avg bill length

)

A tibble: 0 x 3
i 3 variables: species <fct>, bill_length_mm <dbl>, year <int>

Let’s say we are interested in manipulating our data set by species.
I want to know how many species I have to further filter this set. To accomplish this, I will use
the the count function to view how many species I have and their associated values within
the data set.

count()
penguins %>%
count(species)

A tibble: 3 x 2
species n
<fct> <int>

51

1 Adelie 152
2 Chinstrap 68
3 Gentoo 124

It appears there are three species within my data set. For one reason or another, I want to
filter out Adelie from further interpretations. To do this, I will add another line below the bill
length filter.

This new line says when species equals Chinstrap OR Gentoo, keep them in the data set.

select() and filter()
penguins %>%
select(species, bill_length_mm, year) %>%
filter(

year == 2007,#using the '==' operator to show everything with the year 2007
bill_length_mm > mean(bill_length_mm),# using '>' to view every row where the bill length is greater than the avg bill length
species == "Chinstrap" | species == "Gentoo" # look in species and pull out chinstrap and gentoo. | allows to command two species, similar to 'or'

)

A tibble: 0 x 3
i 3 variables: species <fct>, bill_length_mm <dbl>, year <int>

Another way to accomplish the same task is to tell R which values to exclude, rather than
include. This is done by using the ‘does not equal’ operator to command R to return every
species value that is not Adelie.

select () and filter()
penguins %>%
select(species, bill_length_mm, year) %>%
filter(

year == 2007,#using the '==' operator to show everything with the year 2007
bill_length_mm > mean(bill_length_mm),# using '>' to view every row where the bill length is greater than the avg bill length
species != "Adelie" #does not equal operator

)

A tibble: 0 x 3
i 3 variables: species <fct>, bill_length_mm <dbl>, year <int>

#the output is the same!

52

Now that we only the data we want to see, let’s create some new columns and row values.
Let’s say we want to add a new column combining species and year and a new column with
the rounded values of bill length. We will be using the mutate function here. Along with this,
we then want to rearrange our data set for viewing purposes of our new variables. This will
be done with the select function.

In this example, I have created the column ‘sp_year’ which will contain both species and year,
but keep their respective values separated by a dash. I then created a new column of the
rounded bill length values using the round function. Notice with these new columns, the first
step is to name the new column and then command R what to put in. Lastly, using the select
function, I command R to order this data set as follows.

select(), mutate(), select()
penguins %>%
select(species, bill_length_mm, year) %>%
mutate(#mutate()

sp_year = paste(species, "-", year), #adding a new column named 'sp_year' and pasting the species column and year column with a dash between them.
rn_bill_length_mm = round(bill_length_mm) #creating a column of rounded bill lengths

) %>%
select(species, year, sp_year, bill_length_mm, rn_bill_length_mm) #placing these new columns an order I would like

A tibble: 344 x 5
species year sp_year bill_length_mm rn_bill_length_mm
<fct> <int> <chr> <dbl> <dbl>

1 Adelie 2007 Adelie - 2007 39.1 39
2 Adelie 2007 Adelie - 2007 39.5 40
3 Adelie 2007 Adelie - 2007 40.3 40
4 Adelie 2007 Adelie - 2007 NA NA
5 Adelie 2007 Adelie - 2007 36.7 37
6 Adelie 2007 Adelie - 2007 39.3 39
7 Adelie 2007 Adelie - 2007 38.9 39
8 Adelie 2007 Adelie - 2007 39.2 39
9 Adelie 2007 Adelie - 2007 34.1 34
10 Adelie 2007 Adelie - 2007 42 42
i 334 more rows

summarize()

Now that we are confident in our wrangling, we can investigate some summary statistics.

First, let’s look at the means and standard deviations of both bill length and depth. This will
be done by name new columns and then using either the mean function or sd function to

53

produce a desired output.

summarize ()
penguins %>%
summarize(#summarize to run summary stats
bill_length_mean = mean(bill_length_mm), #new column with mean value of bill length
bill_length_sd = sd(bill_length_mm), #new column with standard deviation value of bill length
bill_depth_mean = mean(bill_depth_mm), #new column with mean value of bill depth
bill_depth_sd = sd(bill_depth_mm) #new column with standard deviation value of bill depth
)

A tibble: 1 x 4
bill_length_mean bill_length_sd bill_depth_mean bill_depth_sd

<dbl> <dbl> <dbl> <dbl>
1 NA NA NA NA

The last output was informative, but lets look a little deeper. I now want to group these new
values by species. Using the group_by function, we can tell R to group our data set by one,
or more variables.

In this example, I am telling R to group_by species, and then provide me with the means
and standard deviations of bill length and depth.

group_by() and summarize()
penguins %>%
group_by(species) %>% #grouping by one column, species
summarize(#summarize to run summary stats

bill_length_mean = mean(bill_length_mm), #new column with mean value of bill length
bill_length_sd = sd(bill_length_mm), #new column with standard deviation value of bill length
bill_depth_mean = mean(bill_depth_mm), #new column with mean value of bill depth
bill_depth_sd = sd(bill_depth_mm) #new column with standard deviation value of bill depth

)

A tibble: 3 x 5
species bill_length_mean bill_length_sd bill_depth_mean bill_depth_sd
<fct> <dbl> <dbl> <dbl> <dbl>

1 Adelie NA NA NA NA
2 Chinstrap 48.8 3.34 18.4 1.14
3 Gentoo NA NA NA NA

54

Following the trend of the last example, let’s further group our data set. I want to now see
these same values but by species AND year. Using the group_by function again, we can
accomplish this.

In this example, the only change is I added ‘, year’ into my group_by function.

group_by() and summarize()
penguins %>%
group_by(species, year) %>% #grouping by two columns, species and year
summarize(#summarize to run summary stats

bill_length_mean = mean(bill_length_mm), #new column with mean value of bill length
bill_length_sd = sd(bill_length_mm), #new column with standard deviation value of bill length
bill_depth_mean = mean(bill_depth_mm), #new column with mean value of bill depth
bill_depth_sd = sd(bill_depth_mm) #new column with standard deviation value of bill depth

)

`summarise()` has grouped output by 'species'. You can override using the
`.groups` argument.

A tibble: 9 x 6
Groups: species [3]
species year bill_length_mean bill_length_sd bill_depth_mean bill_depth_sd
<fct> <int> <dbl> <dbl> <dbl> <dbl>

1 Adelie 2007 NA NA NA NA
2 Adelie 2008 38.6 2.98 18.2 1.09
3 Adelie 2009 39.0 2.56 18.1 1.24
4 Chinstrap 2007 48.7 3.47 18.5 1.00
5 Chinstrap 2008 48.7 3.62 18.4 1.40
6 Chinstrap 2009 49.1 3.10 18.3 1.10
7 Gentoo 2007 47.0 3.27 14.7 0.908
8 Gentoo 2008 46.9 2.64 14.9 0.985
9 Gentoo 2009 NA NA NA NA

8.3 Practice on your own

First, take the penguins_raw data set and get it as close to the cleaned data set, penguins, as
you can. Use the methods we went over in this section, and apply changes where needed. Hint,
the is.na section is already done. Once complete, continue to the next practice assignment.

Now that we have worked through some examples with Palmer Penguins, let’s try and work
through a data set of our own.

55

Attached here is a Slug data set.

Remember, you will need to import this file into R in the correct format!

Your task is to [1] input it into R, [2] investigate the variables and classes of these variables,
[3] produce an output using each of the functions we just covered, [4] and at least one example
where you use select, rename, arrange, filter, mutate, and group_by in the same
command line. In part 3, for each change to the data set, save the changed data set as a new
object. For part 4, save this object as, ‘Final_Changes’. If you conduct more than one iteration
of part 4, add the associated number at the end of each name. For example, Final_Changes_1,
Final_Changes_2, etc.

56

https://pennstateoffice365-my.sharepoint.com/:x:/g/personal/jqa5357_psu_edu/EXojojTCn3lMlCm5-UZZejsBFgoLjtoMTZZHwdtZKtd6bw?e=lId60J

Part IV

Plotting along: IN BETA

57

9 Testing your skills: ggplot

Recreate these plots to the best of your ability

In this section, we will be using the mtcars data set. Let’s start by reading in ggplot and
the mtcars data set.

library(ggplot2)
data("mtcars")

For more information about this data set, look in the help section.

?mtcars()

Now, let’s take a look a little closer at the data set. Which ‘class’ do these variables belong
to? Are they numeric? Characters? Integers?

This knowledge is very impoartant when building your plots.

View(mtcars)
str(mtcars)

Hints

Here is an example of how to change the variable type inside of the ggplot lines and outside.
Notice here, we are calling the am column with the $ operator.

ggplot(mtcars, aes(x = as.factor(am)))

mtcars$am <- as.factor(mtcars$am)

You may also need to search for ggplot format help on these. Please see the extra resources
at the bottom of this page.

58

Plot time

Graph 1: geom_point

10

20

30

2 3 4 5

Weight (1000 lbs)

M
ile

s/
(U

S
)

ga
llo

n

Graph 2: geom_boxplot

[1] "0" "1"

59

Automatic

Manual

100 200 300 400
Displacement (cu.in.)

Tr
an

sm
is

si
on Number of forward gears

3

4

5

More to come!! 6/9/2023

Additional resources

Lecture notes

Basic R graphics guide

ggplot online textbook

60

https://www.jeffdoser.com/files/for875/_book/ggplot2.html
https://www.jeffdoser.com/files/for875/_book/graphics.html
https://github.com/hadley/ggplot2-book

Part V

Last part

61

10 Resources and cheat sheets

Cheat sheet links

Data Table

dplyr and tidyr

ggplot

62

https://pennstateoffice365-my.sharepoint.com/:b:/g/personal/jqa5357_psu_edu/EfdtqGr2gg1EkH85xjtJ7fEBncCHPqt6RsinA0nv6J-wlg?e=Bpx9EJ
https://pennstateoffice365-my.sharepoint.com/:b:/g/personal/jqa5357_psu_edu/Editnu7i18pNowweklKZn7MBXHybv1gFChrbOTRXLJIv3Q?e=Esw6NB
https://pennstateoffice365-my.sharepoint.com/:b:/g/personal/jqa5357_psu_edu/EfNjyEtk5r5AiYeYCcV4tsABtDg0QNlnfSgzJrwtuRza1A?e=cuvesU

11 Terms of endearment

To whom it may concern

Shout out to Daniel Bliss for listening to me think loud (and complain) during this process
and also for being the first person to proof read.

Chief editor: Daniel D’Bliss

Editor: Shea Tillotson

GitHub troubelshooter: Callum Arnold

63

References

What is R?

1. nd. “What is R?” The R Foundation. (link)

RStudio vs r

2. nd. “R and RStudio” BYU: Department of Statistics. (link)

Excel vs r

3. Abrahams, Amieroh. February 23,2023. “Why should I use R: The Excel R Data
Wrangling comparison” jumping rivers. (link)

Style

4. nd. “The tidyverse style guide” tidyverse. (link)

5. nd. “Google’s R Style Guide” styleguide. (link)

6. https://towardsdatascience.com/an-introduction-to-the-pipe-in-r-823090760d64 pipe

64

https://www.r-project.org/about.html
https://statistics.byu.edu/r-and-rstudio
https://www.jumpingrivers.com/blog/comparing-r-excel-data-wrangling/
https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html

	Welcome to an introductory R course for natural scientists
	One Code To Rule Them All
	What this course will cover:
	Part 1: The Reasoning
	Part 2: The Beginnings
	Part 3: Buckle up

	The Reasoning
	Introduction
	What is programming?
	Programming
	What is R?

	Getting started with R
	Downloading R
	R vs RStudio

	The big four
	Components of RStudio

	R as a tool
	Excel vs. R and why we should care
	Excel vs R

	The Beginnings
	Starting a project
	Starting a new project
	R-compatible data sets
	How to get data into R
	Importing data

	Types of data

	Basic functionality
	Shortcuts, arithmetic commands, logic, and other helpful tools
	Shortcuts
	Arithmetic operators
	Logic commands
	Other important operators

	Several methods for calling different variables
	Background of the operators
	The dollar sign: $
	Single dimension square bois: []
	Multiple dimension square bois: []
	Last but not least, the pipe: %>%
	The results, explained

	Getting fancy widdit
	Functions, packages, and all that jazz
	What is a function?
	What is a package?
	Packages with data

	Coding etiquette
	How to write code that is clean, clear, and reproducible
	Naming new objects in R
	Style
	Annotations

	Buckle up
	Data wrangling
	Cleaning our data in R
	R > excel
	What we use to wrangle

	dplyr Examples
	NAs in R
	select()
	rename()
	arrange()
	filter()
	summarize()

	Practice on your own

	Plotting along: IN BETA
	Testing your skills: ggplot
	Recreate these plots to the best of your ability
	Hints
	Plot time
	Additional resources

	Last part
	Resources and cheat sheets
	Cheat sheet links

	Terms of endearment
	To whom it may concern

	References

